ВЛИЯНИЕ ХИМИЧЕСКОГО СОСТАВА И ТЕРМИЧЕСКОЙ ОБРАБОТКИ НА МАГНИТНЫЕ СВОЙСТВА ТРАНСФОРМАТОРНОЙ СТАЛИ М110-23S

В.А. Юрьев, С.В. Бахтин, С.Д. Иванова

В статье рассматривается влияние химического состава и технологических режимов на структуру и свойства готовой электротехнической анизотропной стали марки М110-23S. Предложены наиболее благоприятные условия для создания текстуры Госса. Получены результаты по оптимальному химическому составу, температуре отжига и составу атмосферы, обеспечивающие максимальную магнитную индукцию и минимальные магнитные потери

Ключевые слова: электротехническая анизотропная сталь, отжиг, текстура, магнитные свойства

Одной из наиболее важных задач для повышения магнитных свойств и улучшения качества трансформаторной стали является удельных магнитных перемагничивание. Это определяется величиной, формой зерен и текстурой, которые зависят технологии её изготовления, химического состава металла, от величины обжатий при холодной и горячей прокатке и термообработки. Основное разработке технологии её внимание уделяется производства, приводящей к формированию кубической текстуры, обеспечивающей одинаково высокие магнитные свойства как вдоль, так и поперек направления прокатки [1].

В данной работе было изучено влияние технологических факторов на качество готовой электротехнической анизотропной стали M110-23S, производства ООО НЛМК. Исследования проводили в промышленных условиях в цехе ЛПЦ-2 и в лабораторных условиях.

Проводилась оценка влияния химического состава, температуры обезуглероживающего отжига, газовой атмосферы высокотемпературного отжига, структуры и текстуры на магнитные свойства готовой стали толшиной 0.23 мм.

Влияние химического состава на магнитные свойства стали [2] М110-23S осуществлялось после второй холодной прокатки на конечную толщину 0,27 - 0,30 мм и раскатки концевых частей от трехпяти рулонов каждой плавки на толщину 0,23 мм. Эксперимент выполнен на 82 плавках текущего производства. Незначительные изменения содержания примесей, например, углерода на 0,002% или кремния на 0,03%, приводят к изменению магнитных потерь более, чем на 20%.

Для изучения влияния температуры обезуглероживающего отжига на структуру, текстуру и магнитные свойства [3] в качестве исходного материала брали горячекатаные образцы электротехнической

Юрьев Владимир Александрович – ВГТУ, канд. физ.-мат. наук, доцент, тел. 89507653146

Бахтин Сергей Васильевич - НЛМК, заместитель начальника Инженерного центра, канд. техн. наук, доцент,

тел. (4742) 44-44-26

Иванова Светлана Дмитриевна - ВГТУ, студент, тел. 89518590047

анизотропной стали толщиной 2,5мм. Структура горячекатаного металла представлена на рис. 1. Далее проводился в несколько стадий подкат на конечную толщину 0,23мм с проведением отжига в пошаговом интервале от 850°C до 890°C.

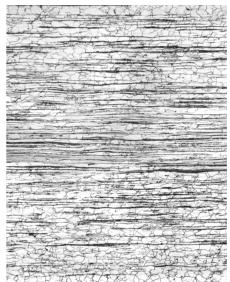


Рис. 1. Структура горячекатаной электротехнической анизотропной стали, × 50

Влияние температуры обезуглероживающего отжига на структуру подката на размер зерна феррита, глубина зоны внутреннего окисления (ЗВО) и размер зерна обезуглероживающего подкакта металла представлено в таблице 1.

Таблина 1 Влияние температуры обезуглероживающего отжига на структуру подката на размер зерна феррита, глубина ЗВО и размер зерна обезуглероживающего подката металла

Температура отжига, 0 С	850	860	870	880	890
Размер зерна, мкм	24	33	44	45	55
Глубина ЗВО, %	3,0	3,2	3,4	3,8	4,0
Размер зерна обезуг-	12	13	15	17	18
лероживающего под-					
ката, мкм					

Повышение температуры обезуглероживающего отжига с 850°С до 890°С приводит к увеличению зерна матрицы первичной рекристаллизации (феррита в обезуглероженном подкате) с 11,5мкм до 18,0мкм; росту глубины ЗВО с 2,9мкм до 3,9мкм; увеличению площади, занятой окислами кремния с 3,5% до 8,0% и увеличению макрозерна готового металла с 24 до 54 мм.

Повышение температуры обезуглероживающего отжига с 850° С до 890° С приводит также к увеличению плотности ингибиторной фазы с 3.8×10^{8} $1/\text{cm}^{2}$ до 11.1×10^{8} $1/\text{cm}^{2}$.

Магнитная индукция B_{800} увеличивается от 1,862Тл до 1,886Тл при изменении размеров макрозерна от 24мм до 42мм соответственно. При дальнейшем увеличении размеров макрозерна до 54мм магнитная индукция изменяется незначительно. Изменение удельных магнитных потерь $P_{1,7/50}$ в зависимости от размеров макрозерна носит нелинейный характер — минимум потерь наблюдается при размере макрозерна в 42мм. Отклонение от этого размера (как увеличение, так и снижение) приводит к росту потерь (рис. 2).

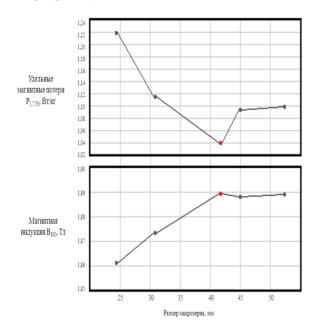


Рис. 2. Влияние изменения размеров макро зерна готового металла на магнитные свойства готового металла.

Проведенные рентгенографические исследования подката показали, что в поверхностной

обезуглероженной и промежуточной зонах преобладает текстура Госса, т.е. в плоскости проката преобладает кристаллографическая плоскость типа {220}. С дальнейшим удалением от поверхности интенсивность этой ориентировки ослабевает. Основной компонентой текстуры в центральном сечении горячекатаного подката является кубическая {200} [4].

На обезуглероженном подкате отмечается зависимость компоненты {220} от температуры обезуглероживающего рекристаллизационного отжига.

Как видно из табл.2 максимальная полюсная плотность ориентировки $\{220\}$ отмечается при температуре $870^{\circ}C$.

Для образцов, прокатанных по схеме $0.70 \rightarrow 0.23$ мм и отожженных при температуре обезуглероживающего отжига 890° С, выполнен высокотемпературный отжиг в атмосферах чистого% H_2 и смеси 75% $H_2 + 25\%$ N_2 .

Макростурктура после высокотемпературного отжига в атмосферах различного состава одинакова. В тоже время для листа отожженном в азотоводородной атмосфере, отмечена большая острота текстуры, как по плоскости, так и по направлению прокатки.

На металле, отожженном в азотоводородной атмосфере, по сравнению с металлом, отожженным в водородной атмосфере, отмечен более высокий уровень магнитных свойств.

Удельные магнитные потери $P_{1,7/50}$ в среднем ниже на $0,05\mathrm{Bt/kr}$, магнитная индукция B_{800} выше на $0,02\mathrm{Tn}$.

Из проведенных исследований можно сделать следующие выводы:

1.Анализ влияния химического состава показал, что минимальные удельные магнитные потери ($P_{1,7/50} \le 1,20$ Вт/кг) обеспечивает следующий химический состав: C=0,034-0,036%; Si = 3,05–3,10%; Al = 0,016–0,017%; N = 0,009–0,010%; P $\le 0,0081\%;$ Ti $\le 0,0039\%.$

2.Оптимальный комплекс магнитных свойств ($B_{800} \ge 1,89$ Тл, $P_{1,7/50} \le 1,04$ Вт/кг) и совершенная текстура Госса получены в процессе обезуглероживающего отжига при температуре 870° С. Изменение температуры обезуглероживающего отжига (как увеличение, так и снижение) приводит к увеличению удельных магнитных потерь, формированию менее совершенной текстуры и др.

Таблица 2 Полюсная плотность компонент текстуры обезуглероженных образцов M110-23S

Толщина	Т отжи-	Место съем- ки	P _(hkl) . %					
подката Н _{исх.} , мм	га, °С		{200}	{211}	{220}	{310}	{222}	{321}
0,60 мм	850	Поверхность	17,6	12,6	6,8	12,2	43,8	6,9
	860		14,1	12,4	8,1	15,6	42,4	7,3
	870		16,3	13,0	10,1	12,3	41,5	6,8
	880		13,7	13,2	8,4	11,1	48,1	5,4
	890		14,7	13,2	8,3	10,0	49,0	4,7

3.Применение при высокотемпературном отжиге азотоводородной атмосферы (75 % H_2 + 25 % N_2) по сравнению с водородной атмосферой (100 % H_2) приводит к формированию в металле более острой текстуры Госса и, как следствие, получению более оптимального комплекса магнитных свойств. Удельные магнитные потери $P_{1,7/50}$ оказались в среднем ниже на 0,05 Bt/kr, а магнитная индукция B_{800} выше на 0,02 Tn.

Литература

- 1. Миронов Л.В. Текстурообразование при отжиге холоднокатаной трансформаторной. Изв. АН СССР, сер. физ., т. XXII / Л.В. Миронов, 1958, № 10.
- 2.Дубров Н.Ф. Электротехнические стали. / Н.Ф. Дубров, Н.И. Лапкин. М.: Металлургия, 1963. 384 с.
- 3.Нисиикэ У., Иида Ц. Способ изготовления анизотропной кремнистой листовой стали. Перевод с японского языка. Описание изобретения к выложенной заявке № 59-208021, МКИ С 21 D 8/12, С 22 С 38/02, Н 01 F 1/14, 1984.6.
- 4.Горелик С.С. Рекристаллизация металлов и сплавов. / С.С. Горелик. М.: Металлургия, 1978. 544 с.

Воронежский государственный технический университет Новолипецкий металлургический комбинат

INFLUENCE OF THE CHEMICAL COMPOSITION AND THERMAL PROCESSING ON MAGNETIC PROPERTIES OF TRANSFORMER STEEL M110-23S

V.A. Yuryev, S.V. Bakhtin, S.D. Ivanova

In article influence of a chemical composition and technological modes on structure and properties of ready electrotechnical anisotropic steel of the M110-23S. Offered the most favorable conditions for the establishment of Goss texture. Results on an optimum chemical composition, temperature of annealing and atmosphere structure are received at high-temperature annealing

Key words: electrotechnical anisotropic steel, annealing, structure, magnetic properties