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ABSTRACT

Distortion is a desirable effect for sound coloration in electric
guitar amplifiers and effect processors. At high sound levels, par-
ticularly at low frequencies, the loudspeakers used in classic style
cabinets are also a source of distortion. This paper presents a case
study of measurements and digital modeling of a typical guitar
loudspeaker as a real-time audio effect. It demonstrates the com-
plexity of the driver behavior, which cannot be efficiently mod-
eled in true physical detail. A model with linear transfer functions
and static nonlinearity characteristics to approximate the measured
behavior is derived based upon physical arguments. An efficient
method to simulate radiation directivity is also proposed.

1. INTRODUCTION

Loudspeakers for the electric guitar generally follow the traditional
designs from 1950s to 1970s. The loudspeaker cabinets are open-
or closed-back designs, and the driver units have a soft, often cor-
rugated paper cone, with relatively stiff suspension, likecommon
loudspeakers of the time. This design clearly deviates frommod-
ern Hi-Fi loudspeakers that have a more massive and rigid cone,
with less stiff suspension. Such classical drivers have a compli-
cated set of cone breakup modes (resonances) at mid to high fre-
quencies (see [1, 2]), and the natural lowpass characteristics of
them are utilized to cut the high-frequency components as needed
when playing distorted sound. The inherent nonlinearitiesand
chaotic behavior in guitar loudspeakers are even desired, while in
Hi-Fi loudspeakers maximal linearity is the goal.

These properties of classic style guitar loudspeakers make
them challenging to model in detail. Often, IIR or FIR filterswell
approximate the linear characteristics that model the resonances of
the cone and the acoustic radiation the cabinet, and have been used
in previous amp simulations [3, 4, 5]. Such models are most likely
used in commercial modeling amplifiers because they are easyto
obtain by measurement in the studio, and easy to implement using
standard DSP techniques. In fact, freely available collections of
cabinet impulse responses are popular on the internet [6].

Detailed physically-based signal processing models have pre-
viously been developed to study the nonlinearities of loudspeakers

to linearize them. These lumped models involving numericalin-
tegration were implemented for real-time evaluation of design pa-
rameters [7], and for a feedback control system [8]. In particular it
was found that Volterra models were not sufficient to characterize
accurately the nonlinearities of loudspeakers at high amplitudes.

Our measurements corroborate their findings that the behavior
of a nonlinear loudspeaker is difficult to model simply. However,
it is of great interest to provide the most efficient model that suffi-
ciently replicates the effect of a nonlinear guitar loudspeaker, be-
cause typical implementations use very limited hardware resources
while providing as many audio effects as possible. Observing that
perceptually the nonlinearity at low frequencies is most prominent,
we choose to develop and evaluate a simple model suitable fora
typical audio effects signal processor. The DSP structure selected
comprises a linear transfer function from the electric portto cone
vibration, followed by a static (memoryless) nonlinearity, and an-
other linear filter that represents sound radiation from cone vibra-
tion.

For this study, we measured and modeled a typical loud-
speaker cabinet (Engl 12 inch cabinet, Screamer 50 combo; the
amplifier part of the combo was not used), see Fig. 3. The single
loudspeaker driver is a Celestion G12 Vintage 30 (30W, 8 Ohm).
Section 3 of the paper describes the measurement methodology
applied, Section 4 presents fitting of a linear model to the data,
Section 5 fitting of a nonlinear model, and Section 6 concludes the
paper.

2. BASICS OF LOUDSPEAKER MODELING

Figure 1 depicts the basic structure of a typical open-back gui-
tar loudspeaker cabinet and the construction of the loudspeaker
element (driver). A voice coil in a magnetic field moves the di-
aphragm (cone), which radiates sound, and the movement induces
a voltage back to the coil. The cone is suspended at the rim and
by a spider in the center. In classical drivers the cone is often cor-
rugated so that, while full piston-like movement happens atlow
frequencies, toward higher frequencies only a smaller radius of
the cone moves together with the voice coil.
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Figure 1: Open-back cabinet and electrodynamic driver.

2.1. Linear behavior

The small-signal behavior of a loudspeaker at low frequencies can
be approximated by a lumped element equivalent circuit as shown
in Fig. 2 [1]. HereRe andLe are the resistance and inductance
of the voice coil, and the electric port is driven by power amplifier
output voltagee. An ideal transformer with force factor (“turns ra-
tio”) of Bl : 1 connects the electrical and mechanical subsystems,
whereB is magnetic field density andl is the length of voice coil
in the air gap of the magnet.

The mechanical subsystem in Fig. 2 consists of a mechani-
cal resistanceRm due to velocity-proportional (frictional) losses,
suspension complianceCm, and dynamically moving massMm.
Load impedanceZa in Fig. 2 represents acoustic radiation in this
mechanical circuit. Cone velocityv multiplied by the cone area
yields volume velocity.

At low frequencies the radiated far field sound pressure for
a closed enclosure is proportional to the time derivative ofvol-
ume velocity, or also directly proportional to cone acceleration. In
comparison, the open-back cabinet is rather like a dipole radiator,
attenuating low frequencies more steeply, but this effect is not as
pronounced with close-microphone recording practices. Toward
higher frequencies the pressure response should decrease due to
the mass of the cone, but the effective area of the cone becomes
smaller and the directivity of radiation increases, counteracting
these effects to maintain the on-axis response through a compar-
atively high cutoff frequency for the cone radius, as will beseen
from the measurement data.

For a typical loudspeaker, the equivalent circuit is accurate
only at low frequencies around the fundamental resonance deter-
mined by the mechanical mass and compliance. At frequencies
higher than this resonance, the cone can no longer be considered
as a rigid mass and should be modeled instead as a distributedsys-
tem. Wave propagation then explains the many breakup modes,
or resonances, of the cone. While in principle the cone couldbe
described as a cylindrical transmission line (waveguide) [2], non-
linearities and chaotic behavior observed in cone vibration make
detailed modeling very difficult in practice.

2.2. Nonlinear behavior

The lumped model of Fig. 2 with nonlinear, signal-dependentel-
ements can also describe the low-frequency nonlinear behavior of

Re Rm Mm Cm

Za

Le Bl:1

e v

Figure 2: Equivalent circuit of a loudspeaker driver.

the loudspeaker. A concise summary of the comprehensive dis-
cussion [9] on the various causes of nonlinearities in loudspeakers
follows:

In real loudspeakers, the suspension is not linear but usually
increases in stiffness for large displacements. This can bemodeled
by using a displacement dependent, smoothly saturating function
Cm(x) instead of the the constantCm. Since the distortion is de-
pendent onx, this effect generates significant distortion only at low
frequencies, where displacement is large. Intermodulation distor-
tion is not generated by this effect.

The force factorBl (the turns ratio of the transformer in Fig. 2)
is also a function of coil displacementx, and features a saturat-
ing characteristic. At large displacements part of the voice coil
leaves the gap, thereby producing less force for the same currenti.
Notable harmonic distortion is generated only at low frequencies,
where cone displacement is large. This phenomenon generates sig-
nificant intermodulation distortion, which results from amplitude
modulation.

The varying voice coil inductanceLe(x, i) also contributes
significantly to the nonlinearity. The electrical impedance at high
frequencies is significantly higher for negative displacement than
for positive displacement, because the magnet acts like a metal
core when the coil is within the magnet structure; outside the mag-
net, the coil is more like an air core inductor. Additionally, Le also
depends on current, because at high currents the ac magneticfield
changes the operating point on theB(H) curve. The varying in-
ductanceLe(x, i) produces distortion all over the audio band, but
its magnitude is generally lower than that generated byCm(x) and
Bl(x) at low frequencies.

As discussed earlier, the lumped model is only valid for fre-
quencies at which the membrane moves as a rigid body. At higher
frequencies, breakup modes appear along with additional nonlin-
ear behavior at large amplitudes. These nonlinearities arecaused
by geometry changes during the vibration (geometric nonlinear-
ity), and amplitude dependent Young’s modulus,E (material non-
linearity). In [10], a nonlinear modal approach models the geomet-
ric nonlinearities of a small prototype cone, starting fromthe Von
Kármán plate equations. The flexible corrugated cone of the gui-
tar cabinet presents an even more complicated case and produces
notable distortion, as will be seen in the measurements.

3. LOUDSPEAKER CABINET MEASUREMENTS

The first task of the project was to measure the linear and non-
linear behavior of the loudspeaker cabinet. Small-signal measure-
ments characterized the linear properties, while measurements us-
ing varying amplitude sine waves as input characterized thenon-
linearities. Three different properties were measured: (1) electric
port to cone velocity transfer function, (2) electric port to sound
pressure radiation, and (3) electric port voltage-currentrelation-
ships.
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3.1. Measurement Setup

A more detailed description of the measurement setup follows:

• General issues: Linear input-output relationships were de-
termined by the logarithmic sine sweep technique [11] us-
ing the FuzzMeasure software [12] on a Macintosh com-
puter with a Presonus Firepod audio interface. Software
written in Pd [13] controlled the distortion measurements
for selected frequencies using sine waves with a linearly in-
creasing amplitude ramp. The speaker was driven from a
Yamaha MX-70 stereo power amplifier that has low distor-
tion and output impedance.

• Acoustic response: The transfer function from electric port
voltage to radiated sound pressure was measured in an ane-
choic chamber, as shown in Fig. 3 using Brüel & Kjær
freefield measurement microphones. The near-field re-
sponse was registered at distance of 10 cm from the dust
cap edge on the main axis. Far-field measurements were
done at 1.5 m from the cone for horizontal angles of 0, 30,
60, 90, 120, 150, and 180 degrees, and vertically for angles
0,±30, and 60 degrees.

• Mechanical response: The transfer function from electric
port voltage to cone velocity was registered by a laser vi-
brometer (Polytec OFV 303 head and OFV3001 controller)
for 6 points, as indicated by the beam reflector tape spots in
Fig. 4, starting from P1 at the dust cap edge, radially out-
ward toward the suspension rim position P6. In the figure,
the bright point P2 is scattering the beam. We paid special
attention to characterization of points P1 and P4. Notice the
corrugation of the diaphragm beyond point P3.

• Electric response: The impedance of the speaker was mea-
sured as the ratio of voltage across and current (converted
to voltage in a small resistor in series with the speaker)
through the electric port.

• Nonlinear responses: Corresponding nonlinearity measure-
ments were done for the transfer properties and electric port
behavior with the same hardware and a custom amplitude
ramp software. A set of test frequencies was selected: 70
Hz (close to the mechanical resonance of the driver), 100
Hz, 140 Hz, 200 Hz, 400 Hz, 1 kHz, and 4 kHz. The sine
sweep ramp duration was two seconds, over which the am-
plitude increased from zero to a level corresponding to 30
Watts of electric power. For such sweeps, the cone veloc-
ity was registered by laser vibrometer, the radiation by the
measurement microphone, and the current by a sense resis-
tor at the electric port.

3.2. Measurement Results

The linear electrical impedance of the loudspeaker is shownin
Fig. 5. The mechanical resonance frequencyf0 = 71.2 Hz and
electromechanical quality factorQTS = 0.64 are determined from
the electrical impedance by using Thiele’s method [14].

Linear frequency responses of the cone velocity at various ra-
dial points are shown in Fig. 6. Note that the mechanical reso-
nance at 71 Hz is present at all the positions shown, confirming
piston-like motion at low frequency. This frequency will beused
to determine the displacement that influences the nonlinearity. At
higher frequency, breakup modes are evident, and these vibrations
even affect the center of the cone.

Figure 3: Loudspeaker cabinet in an anechoic chamber for near-
field pressure response measurement.

Figure 4: Measurement of cone vibration by laser vibrometer.
White spots are reflectors for the laser beam and the bright spot
(P2, second from left) is the current scattering point.
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Figure 5: Small signal sweep of loudspeaker electrical port
impedance.
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Figure 6: Logarithmic frequency small signal sweep of velocity
measured at points P1, P2, and P4, offset for clarity.

2nd 3rd 4th 5th THD

70 Hz -11 -13 -28 -37 -9
100 Hz -27 -29 -48 -79 -25
140 Hz -36 -47 -60 -69 -36
200 Hz -40 -49 -75 -71 -39
400 Hz -40 -46 -77 -67 -39
4 kHz -42 -39 -69 -62 -37

Table 1: Distortion in dB, relative to fundamental, of free-field
pressure measurement at0◦ on axis, 1.5 m distance, 30 W input.

Representative plots of frequency response for small signal
pressure measurements are given in Fig. 9 (Sec. 4 on linear
modeling) and for distortion as a function of input amplitude in
Figs. 13, 14 (Sec. 5 on nonlinear fitting). Much of the salienttim-
bre imparted by the loudspeaker comes from the linear filtering.

Harmonic distortion figures for the frequencies tested are tab-
ulated in Table 1 for an input level corresponding to approximately
30 W, which was noted to sound softer in volume than it typically
does for playing at concert levels. This is partially due to the use
of single tone sinusoids for the test.

A final oddity of the loudspeaker will be noted here. During
the nonlinear test using the amplitude ramp at 1000 Hz, we found
that the loudspeaker produced the first subharmonic at high input
levels. Figure 7 shows the harmonics as a function of input level
for the cone velocity signal. Notice that the subharmonic appears
shortly after 1 sec, and is much stronger at P4 than at P1, clearly
dominating over the fundamental.

4. LINEAR MODELING

The small-signal behavior of the guitar speaker can be described
by a voltage to pressure transfer function. This transfer function
includes the vibration of the mechanical system (voice coil, cone)
and the radiation effects, and can be implemented as a singledigi-
tal filter.

The poles of the measured transfer functions generally cor-
respond to break-up modes of the cone. Radiation waves from
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Figure 7: (Sub)-Harmonic distortion products of cone velocity
normalized to fundamental strength for linear amplitude ramp at
1000 Hz, points P1 (top), P4 (bottom). Lines 1–4 are fundamental
to 4th harmonic, and line 0.5 is subharmonic (500 Hz).

these modes superpose constructively or destructively, depending
on their relative phases at the listener, and cause variation in spa-
tial response. This physical interpretation motivates theuse of a
shared pole set to model transfer functions to different locations.

The fixed-pole parallel second-order IIR filter, also known as
the “parallel filter,” which was successfully applied to instrument
body modeling [15] and loudspeaker-room response compensation
[16] in prior work, will model the linear response of the guitar
loudspeaker here because it takes into account the logarithmic fre-
quency resolution of hearing to minimize computational complex-
ity.

4.1. Parallel filter formulation

The transfer function of the parallel filter is

H(z−1) =

K
X

k=1

dk,0 + dk,1z
−1

1 + ak,1z−1 + ak,2z−2
+

M
X

m=0

bmz−n, (1)

where K is the number of second order sections, and the sec-
ond sum constitutes the optional FIR part, which is not used here
and will be omitted subsequently. The filter structure is depicted
in Fig. 8. Every second-order section of this filter corresponds
physically to a specific breakup mode of the cone, and its weights
dk,0, dk,1 determine its contribution to the radiated sound pressure.
However, if the model order is lower than the order of the physi-
cal system, the poles do not necessarily correspond to real modes.
In particular, the warped Prony’s method used for determining the
poles attempts to model the overall behavior of the transferfunc-
tion instead of determining the precise pole locations for afew
specific modes.

Because hearing is relatively insensitive to absolute filter
phase, the measured impulse responses are first converted to
minimum-phase. The poles of the parallel filter are then deter-
mined by fitting a warped IIR filter [17] to the transfer function
measured on-axis (0◦) by using Prony’s method. The warped poles
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Figure 8: The structure of the parallel second-order filter.

p̃k are converted back to linear frequency scale by the expression

pk =
p̃k + λ

1 + p̃k

, (2)

where λ is the warping parameter that was used to design the
warped IIR filter. Then, the same pole set is used to fit filters to
responses for different angles measured.

Because the poles of the IIR filter are predetermined by
Prony’s method, (1) becomes linear in its free parametersdk,0,
dk,1, andbm. We optimize for these free parameters by minimiz-
ing the error in the discrete time domain.

The impulse response of the parallel filter is given by

h(n) =
K

X

k=1

dk,0uk(n) + dk,1uk(n − 1), (3)

where uk(n) is the impulse response of the transfer function
1/(1 + ak,1z

−1 + ak,2z
−2), which is an exponentially decaying

sinusoidal function. Writing (3) in matrix form yields

h = Mp, (4)

wherep = [d1,0, d1,1, . . . dK,0, dK,1]
T is a column vector com-

posed of the free parameters. The rows of the modeling signalma-
trix M contain the direct and delayed impulse responses,uk(n),
and uk(n − 1), of each of the model’s parallel filters. Finally,
h = [h(0) . . . h(N)]T is a column vector representing the result-
ing impulse response. The problem reduces to finding the optimal
parameterspopt that minimize the distance betweenh = Mpopt

and the target responseht. If the error function is evaluated in the
mean squares sense, the optimum is found by the least square (LS)
solution

popt = (MH
M)−1

M
H
ht, (5)

whereMH is the conjugate transpose ofM.
Figure 9 displays voltage to pressure transfer functions that

model the guitar speaker using 50th and 16th order parallel filters
(25 and 8 pole pairs, respectively) for the responses at0◦ and30◦

in the horizontal plane. The poles determined from the on-axis
(0◦) response can also successfully model the responses at other
locations. From a perceptual point of view, the 16th order model
produces good sounding results that impart the timbral effect of
the loudspeaker while also smoothing measurement noise. Fur-
thermore, the sonic differences from the 50th order model would
be subtle in the typical noisy environment for playing electric gui-
tar.
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Figure 9: Common pole modeling of the guitar cabinet transfer
function using the parallel filter: on-axis measured (a), modeled
by a 50th order filter (b), and by a 16th order filter (c). The same
pole set is used for modeling the off-axis (30◦) response: measured
(d), modeled by a 50th order filter (e), and by a 16th order filter (f).
The transfer functions are offset for clarity.
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Figure 10: Common pole modeling of the guitar cabinet transfer
function using a 50th order parallel filter. Only modeled responses
are shown: (a) estimated from the0◦ transfer function, (c) from
the30◦ transfer function, and (e) from the60◦ transfer function.
The dashed lines show interpolated transfer functions (b) between
0◦ and30◦, and (d) between30◦ and60◦. The curves are offset
for clarity.

4.2. Advantages of the parallel filter

The greatest benefit of common pole modeling is that the mod-
eled responses can be efficiently interpolated. Linearly interpolat-
ing thedk,0, dk,1 parameters estimated for different angles corre-
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Figure 11: Simplified nonlinear model of the guitar loudspeaker.

sponds to linearly interpolating between the measured responses,
analogous to interpolating the parameters of FIR filters. This is
depicted in Fig. 10, where the responses at15◦ and45◦ (dashed
lines) are computed by averaging thedk,0, dk,1 parameters of the
responses at0◦ and30◦, and30◦ and60◦, respectively. This re-
sults in a seamless transition without artifacts, in contrast with in-
terpolating between IIR filters with different poles.

Because switching between different angles does not produce
transients, this enables interesting effects, such as the sound of the
guitar cabinet with a virtual microphone rotating around itat high
speed, similar to the Leslie effect discussed in [18]. It is common
practice to use multiple microphones to pick up the sound of the
cabinet, and mix these signals to achieve the desired tone. In this
case only the output coefficients thedk,0, dk,1 need to be reim-
plemented, which reduces computational complexity. Another ap-
plication requiring radiated sound at different angles is simulating
the interaction of the guitar cabinet with a virtual room whose re-
flections are computed by the image-source method.

5. NONLINEAR MODEL FITTING

We will now develop a simple model for the nonlinear effect ofthe
guitar loudspeaker based upon physical arguments.

A computationally efficient model can be made if only the low
frequency distortions are considered. We justify this by noting
that low frequency nonlinearities dominate the detected distortion
in the pressure signal, partly because the fundamental for low fre-
quency signals radiates less efficiently than the distortion products.
The total harmonic distortion around the resonance frequency of
the speaker is roughly 10%-30% or more, while in the high fre-
quencies it is around 1%, which will be masked by the distortion
of the guitar amplifier. We thus assume for this model that a memo-
ryless, or static, nonlinearity characterizes this nonlinear behavior.

The dominant causes of distortion at low frequencies are the
nonlinear force factorBl(x) and the nonlinear complianceCm(x),
which both depend on the coil displacementx. In this model, a
low order polynomial curve approximates the effects of bothof
these nonlinearities together as a single function mappinglinear
coil displacementx to a distorted effective cone displacementxd.
Therefore, the overall strategy is to find a transfer function from
the input voltage signale to a linear coil displacementx, com-
pute effectivexd as a polynomial ofx, and then convert back to
an equivalent distorted input voltageed to take advantage of the
existing parallel filter, which accounts for radiation effects.

Figure 11 depicts the complete model structure.

5.1. Model development

We assume that the Laplace transform of the voice coil displace-
mentX(s) can be related to the input voltageE(s) of the loud-

speaker by the following linear transfer function [14]:

Hx(s) =
X(s)

E(s)
= K

1

1 + s

ω0QTS
+ s2

ω2
0

, (6)

where ω0 = 2πf0 is the resonance frequency of the speaker,
QTS is the total quality factor,s is the Laplace transform vari-
able evaluated ats = jω, andK = BlCm/Re is the DC dis-
placement sensitivity depending on the force factorBl, compli-
anceCm, and electric resistanceRe. Note that Eq. (6) neglects the
high-frequency roll-off due to the inductanceLe of the driver and
the high-frequency resonances of the membrane. However, the ap-
proximation calculates a sufficiently accurate displacement at low
frequencies, where accurate distortion is desired.

The Euler method (s → 1−z−1) transforms the second-order
low-pass filter of Eq. (6) to a digital implementation:

Hx(z) =
K

1 + 1

ϑ0QTS
+ 1

ϑ2
0

+ z−1

“

−
1

ϑ0QTS
−

2

ϑ2
0

”

+ z−2 1

ϑ2
0

,

(7)
whereϑ0 = ω0/fs is the discrete-time resonance frequency in
radians, andfs is the sampling frequency.

The resulting linear voice coil displacementx maps to an ef-
fective distorted displacementxd, accounting for the nonlinear ef-
fects ofBl(x) andK(x), through a fifth order polynomial:

xd = F (x) = x + p2x
2 + p3x

3 + p4x
4 + p5x

5. (8)

This effective displacement is physically related to the per-
ceived sound pressure by a linear transfer function. To use the
existing parallel filter of Section Sec. 4, which was designed for
voltage input, the inverse filter of Eq. (7),

Hx(z)−1 =
1

K

»

1 +
1

ϑ0QTS

+
1

ϑ2
0

+

z−1

„

−
1

ϑ0QTS

−
2

ϑ2
0

«

+ z−2 1

ϑ

–

, (9)

converts the distorted displacement signalxd to an equivalent dis-
torted voltageed. Note that using the Euler method for discretizing
Eq. (6) facilitates finding this second-order FIR high-passinverse.
Alternatively using the bilinear transform would be problematic
because it produces a zero at the Nyquist frequency forHx(z),
leading to infinite gain in the inverse filterHx(z)−1.

5.2. Parameter estimation

The impedance measurement determined the parameters for the
displacement filter to bef0 = 71.2 Hz andQTS = 0.64. Pa-
rameterK = 0.136 mm/V was determined from the small signal
velocity measurement of the cone for the point P1.

The coefficientsp2..p5 of Eq. (8) are found by fitting the
model to the measured distortion products at 70Hz from the non-
linear velocity response at P1. Integrating this velocity mea-
surement determines the displacement response and computes the
maximum measured displacement to be 3 mm (6 mm peak-to-
peak).

The polynomial fit was performed by comparing plots of the
distortion components for the measured and fitted displacement
responses to the amplitude ramp as in Fig. 13 and adjusting co-
efficients manually. The polynomial function matches well to the
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Figure 12: Static nonlinearityxd = F (x) in the distortion model-
ing block. The dashed line shows a linear response for comparison,
and the vertical dotted lines indicate the limits of parameter fitting.

0 0.5 1 1.5 2
−140

−120

−100

−80

−60

−40

1

2

3

4

5

1

2

3

4

5

Time [s]

D
is

pl
ac

em
en

t [
m

]

Figure 13: Sinusoidal amplitude ramp at 70 Hz, amplitudes ofthe
distortion terms of the extracted displacement signal: measured
(solid line) and modeled (dashed line). The numbers indicate the
order of the distortion products, where 1 corresponds to thefunda-
mental, 2 to the second-order distortion, etc.

measurement as plotted in Fig. 13, indicating that the distortions
for the range of measured signal levels are weak, and not hard-
limiting. The resulting static nonlinearity is displayed in Fig. 12

Because the nonlinearity is not truly memoryless, the model
fitted to 70 Hz will be less accurate at other frequencies. Figure
14 compares the model behavior with the measured distorted dis-
placement for the amplitude ramp at 140 Hz. While the model pro-
duces higher distortion than measured, the qualitative effect is sim-
ilar. For frequencies above 400-500 Hz, the model produces neg-
ligible distortion because the second-order low-pass filter Eq. (7)
attenuates the input to the static nonlinearity, and also keeps alias-
ing negligible.
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Figure 14: Sinusoidal amplitude ramp at 140 Hz, amplitudes of the
distortion terms of the extracted displacement signal: measured
(solid line) and modeled (dashed line), with model parameters op-
timized for the 70 Hz measurement. The numbers indicate the
order of the distortion products.

5.3. The complete model

The DSP model for the nonlinear guitar loudspeaker consistsof
two blocks: a nonlinear processing stage, and the linear parallel
filter of Sec. 4.

Figure 15 displays the linear and nonlinear responses of the
complete model to a logarithmic frequency sine sweep with a peak
amplitude of 22 V. Percentage distortion can be estimated from
the intersection of the corresponding solid and dashed/dotted line
in the figure.

The distortion is modeled only at low frequencies, as expected.
It can be seen that below 100 Hz, the distortion terms outweigh
the linear terms, because they are radiated much more efficiently
compared to the fundamental. This phenomenon also causes third-
order distortion to dominate over second-order at the lowest fre-
quencies.

Sound examples can be found at http://ccrma.stanford.edu/
∼dtyeh/cabinet08/.

6. DISCUSSION AND SUMMARY

This work presents the measurements on a typical guitar loud-
speaker, and characterizes its linear and nonlinear behaviors,
which are very complex in nature. Distortion of the loudspeaker
is found to be a significant effect and deserves further study. Effi-
cient DSP models appropriate for musical effects processing were
derived to simulate the direction dependent radiation and the basic
nonlinear behavior at low frequencies.

The nonlinear modeling can be considered as a first step to-
wards high-quality cabinet modeling, and the limits of thissimple
nonlinear model should be studied further, including a comparison
to the detailed modeling done in the mainstream loudspeakerlit-
erature. If computational resources are available and accuracy is
at a premium, the more detailed physical models presented in[9]
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Figure 15: Distortion components of the loudspeaker cabinet
model of Fig. 11 as a response to a 22 V amplitude sinusoid of
varying frequency. For the parallel filter, the 50th order on-axis
model (Fig. 9 (b)) was used. The numbers indicate the order ofthe
distortion products. The fundamental (linear response) isplotted
with a dashed line.

should be investigated for future work, and possibly implemented
as a wave digital filter [8] for numerical robustness.

Extensions to this work to produce greater realism should ac-
count for room effects on the perception of the guitarist. These
effects include early reflections and alterations to the frequency
response.

The rated limits of a loudspeaker are usually dependent upon
the power handling capability of the voice coil. Transient bursts
or impulses may momentarily exceed these limits in real playing.
The nonlinear transient response of the loudspeaker shouldalso be
studied in greater detail.

It is conjectured that for highly distorted input, the distortion
of the loudspeaker would be masked. For clean guitar signalswith
transient or bass content, the distortion could be a significant part
of the sound. Formal listening tests should be conducted to assess
the audibility of the different distortion components.
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